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Summary 

Living polymerization of L,L-lactide initiated by potas- 
sium _t-but~ and its 18-crown-6 complex was investigated 
in THF solution at room temperature. The results support a 
reversible polymerization mechanism consisting of first order 
in monomer propagation and of unimolecular depropagation. The 
presence of 18-crown-6 has a strong MWD narrowing effect 
(Mw/Nn<l.2), slows down the overall rate of polymerization 
and gives rise to slow initiation. The polymerizations yield 
optically pure polymers both in the presence and absence of 
18-crown-6. 

Introduction 

The poly(L-lactide) and copolyesters of L-lactic acid 
possess extremely low toxicity and low immunogenity, there- 
fore, they are useful materials for various pharmaceutical 
and medical applications. In numerous patents and scientific 
papers dealing with the polymerization, various compounds are 
claimed as potential initiators [i-5]. These polymerizations 
are carried out almost exclusively in bulk at high tempera- 
tures and the conditions do not allow sufficient polymeriza- 
tion control as shown by unpredictable molecular weights and 
broad molecular weight distributions (N /H > 2) [2,7] These 
processes often bring about racemizatio~, n 

On the other hand, when heavy metals are used as initi- 
ators, the poly(L-lactides) designated for medical or phar- 
maceutical purposes need to be purified from the poisonous 
catalysts. 

Because of the above reasons, in this work we tried to 
achieve controlled polymerizations of L,L-laetide by using 
potassium salts as initiators in solution at room tempera- 
ture. 

Potassium salts of carboxylate anions, e.g. potassium 
acetate do not initiate the polymerization under these con- 
ditions even in the presence of 18-crown-6, although they 
initiate ~-propiolactone [7] or oxirane [8] polymerizations. 

As to our knowledge, potassium alkoxides have not been 
investigated so far. Therefore, we chose the potassium tert- 
-butoxide and its 18-crown-6 complex in THF. 

*To whom offprint requests should be sent 
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Experimental 

Monomer: ~,L-lactide was prepared from L-lactic acid 
according to the described procedure [9]. The crude monomer 
was purified twice by recrystallization from dry ethyl ace- 
tare and subs@quently by @ublimat~on in vacuo before use 
(80 C, ---10 mbar). [~]D: -279 . 

Initiator: Potassium tert-butoxide (Aldrich Chemical Co) 
was sublimed and distributed into glass ampules. 18-crown-6 
was purified by the acetonitrile method [lO]. 

Solvent: THF was distilled over CaH 2 and subsequently 
over LiAIH 4 before use. 

Polymerizations 

Polymerizations were carried out under dry nitrogen at- 
mosphere in a stainless steel dry box. Thoroughly cleaned and 
dried round bottom flasks equipped with magnetic stirring bar 
served as reactors. The reactors were charged by lO mL solu- 
tion of 2.88 g L,L-lactide and the polymerizations were star- 
ted by fast introduction of 1 mL 0.2 M THF solution of t-BuOK 
or i mL 0.2 M THF solution of 18-Crown-6 and t-BuOK. FoT 
kinetic investigations I mL samples were draw~ and terminated 
by 20 mL CH3OH. The polymer was filtered, washed and dried. 

Measurements 

GPC measurements were performed by means of a Shimadzu 
RID,6A apparatus equipped with five lO ~m Lichrogel columns. 
The molecular weights were calculated by means of a universal 
calibration curve based on polystyrene standards. 

The optical rotations were measured on a Bendix NPL l&3 
D automatic polarimeter. 

Preliminary Experiments 

Potassium solutions, e.g. the THF solution of 
potassium/18-crown-6, are well known initiators of living 
ring-opening polymerizations Ill]. However, according to our 
knowledge, no report appeared in the literature to claim the 
ring-opening polymerization of L,L-lactide initiated by 
K/18-crown-6/THF system. As Table 1 shows, this solution 
initiated the lactide polmerization but we were not able to 
define experimental conditions to achieve reproducible 
results. Since the potassium reacts with 18-crown-6 to yield 
the potassium salt of triethylene glycol [121, we have run 
polymerization using this salt as initiator. Unfortunately, 
the salt is only poorly soluble in THF, thus the concentra- 
tion of the initiating species could not be maintained prop- 
erly. This was the reason why we turned our attention toward 
the potassium tert-butoxide which is well soluble in THF. 

Results and Discussion 

L,L-lactide can be polymerized with ~-BuOK in THF solu- 
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tion at room temperature (Table 2). The reaction is fast even 
at room tempecature (Fig.l). As can be seen, the conversion 
approaches to a l~miting value (~83 %) indicating that the 
polymerization is reversible. This finding corroborates ear- 
lier investigations [13]. The molecular weight distributions 
were, however, broader than expected for a living system. 

To filter out the possible side reactions, i.e, to reduce 
the reactivity of the propagating species, we used 18-crown-6 
to complex the gegenion. The presence of 18-crown-6 narrows 
the molecular weigh& distribution (Table 3) and slows down 
the polymerization (Fig. 1). The equilibrium concentration of 
L,L-lactide was significantly lower in the presence of 
18-crown-6 than in its absence, indicating that the stabi- 
lizing effect of the gegenion is different in respect of the 
propagation and depropagation. (Table 4) 

The living L,L-lactide polymerization thus involves the 
following elementary steps: 

Initiation 

Iongeneration 

t-BuOK + 18-Crown-& " t-BuO-@ 

where Q stands for the 18-Crowh-6-complex of K + 

Anionation CH 3 
O=c/OH\o O O 

It  t l  t -Bug-�9 , I "t-BuO-O-OH-O-O- H-O-�9 
O\CH/C=o CH 3 CH 3 

I 

CH 3 

M P T � 9  

Propagation 
.- 1,,o \ , o  7 

P 7 0  + nM - -  t-BuO--~---C-TH-O -r 0 
CH3 CH3 ~n CH3 CH3 

Since the propagation is reversible 

kF~ - @ 

Pm@+ M ~kd Pm+l 
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the rate o5 monomer consumption can be expressed as 
follows: 

diM] 

dt 
= kp[Pm@l[M]-kd[Pm+ I@] 

where kp and k d are the rate contants of propagation and 

depropagation, respectively. 

Equilibrium state is reached when 

kp(Pm@][H]oo = kd[Pm+l@ ] 

kd [Pm+l @ I  k d 
[M] - 

co kp [P kp 

If the initiation is 5ast 

d[Ml 
5--[PZ(~)]~v_ = z o thus - k I ([M]-IM] ) 

dt p o 

After integrating with the conditions t=O, [M]=[M]o 

we obtain 

In([M]-IM] ) = - k Iot+ in([M]o-[M ] ) 
P 

The proposed mechanism is valid also for the uncomplexed 
~-BuOK but in this case the gegenion is K +. 

Since experimentally the L,L-lactide concentration was 
maintained much higher than the initiator concentration, we 
expected a straight line when plotting ln([M]-[M]~ ) versus t. 

Indeed, the plot obtained was a straight line, supporting 
the above mechanism (Fig.2). 

Plotting the M values as a funtion of conversion, we 
obtained linear increase showing the living character of the 
L,L-lactide polymerization (Fig.3). 

The slope of the ln([M]-[M]~) vers~s ~ s~raight line 
gives for the complexed case kp=5.3,10- M- s- . The ~or~esr 
ponding value for the uncomplexed case is kp=5.9,10-~M-• -• 
i,e., the propagation has been slowed down by a 5actor o5 ll 
as a result of cemplexation. Using these constants, k d values 
can be calculated 5rom the [M]~=kd/k~ limiting concentra- 
tions: kd= 2.37-10-4s -1 for the comp~exed and kd=l.45-10-3s -1 
for the uncomplexed case. The slowing down 5actor is only 6 
5or the depropagation. 
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The calculated rate constants are only approximate 
values because the suggested mechanism is also only a rough 
approximation. This is especially the case when crown-ether- 
complexation was used: the assumption of fast initiation is 
not valid anymore. This fact can be well seen from the 
versus conversion plot of this system, n 

Although the B increases with the conversion also in 
this case (Fig. 3),nthe plot runs higher than in the absence 
of 18-crown-6. This means that the complexation gives rise to 
slow initiation. 

Despite the living character of the system, the molec- 
ular weight can not be changed by the monomer/initiator ratio 
(Table 5). 

Optical Rotation 

The poly(L-lactides) obtained by living polymerization 
initiated with t-BuOK or with t-BuOK + 18-crown-6 show 
optical activitT, indicating t~at during the ring opening no 
racemization occurs. The value of the specific optical 
rotation is -146• ~ which is close to the literature data 
(e.g.[~]~= -15O ~ Ill). This means that the polymerization 
method described in this article yields almost optically pure 
poly(L-lactide). 

Table i: Polymerization with K/18-crown-6/THF 
system. The concentration of monomer 
CM=I.5 M. 

M/I Time (h) Yield % B n ~w/An 

320 i 7.6 14000 1.43 
160 i 21.6 13500 1.48 
91 i 71.9 10300 1.53 
64 1 56.0 5700 1.50 

Table 2: Polymerization with t-BuOK. 
C M = 1.45 M, M/I = i~0. 

Time Yield % Mn Mw/Bn 

1 min 57.7 10600 1.52 
5 min 65.7 18200 1.47 

i0 min 68.4 18900 1.44 
15 min 70.8 19900 1.43 
25 min 76.4 20000 1.45 
50 min 76.8 21600 1.42 

120 min 74.4 22600 1.42 
22 h 83.3 21800 1.45 
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Table 3: The effec• of the 
t-BuOK: 18-crown-6 
ratio on the MWD. 
CM=I.5 M, M/I=lO0. 

!-BuOK : 18-crown-6 Mw/Mn 

i : 0 1.42 
i : 0.5 1.32 
i : 1 1.17 
i : 2 1.16 

Table 4: Polymerization with tBuOK: 
18-crown-6 = i:i complex 
C M = 1.6 M, M/I = i00. 

Time Yield (%) ~n ~w/Mn 

5 min 
8 min 

14 min 
19 min 
25 min 
37 min 
75 min 

135 min 
22 h 
27 h 

11.7 
16 9 
28 8 
31 4 
38 3 
54 0 
63 0 
72 7 
72 2 
72 0 

8550 
9900 

iii00 
11350 
12500 
13270 
13000 
12650 
14900 
15000 

1.14 
1 ii 
1 ii 
1 16 
1 16 
1 15 
1 16 
1 20 
1 18 
1 17 

Table 5: The effect of M/I on 
the M . Initiator: 
t-BuO~ + 18-crown-6 
~M = 1.5 M 

M/I  
n 

166 13100 
iii 15700 
83.3 18800 
66.6 16500 
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Fig.1. Yield of poly(L-lactide) during 
polymerization. (O)-complexed and 
(~)=uncomplexed case. 
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Fig.2. Dependence of In([M]-[M]~ o) on time, 
in the (O)=complexed and ([])=uncomplexed 
c a s e .  
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Fig.3. Dependence of R n on yield of polymer. 

(O)=complexed and (~)=uncomplexed 
c a s e .  
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